skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qi, Xuewei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract—Object perception plays a fundamental role in Cooperative Driving Automation (CDA) which is regarded as a revolutionary promoter for next-generation transportation systems. However, the vehicle-based perception may suffer from the limited sensing range and occlusion as well as low penetration rates in connectivity. In this paper, we propose Cyber Mobility Mirror (CMM), a next-generation real-world object perception system for 3D object detection, tracking, localization, and reconstruction, to explore the potential of roadside sensors for enabling CDA in the real world. The CMM system consists of six main components: i) the data pre-processor to retrieve and preprocess the raw data; ii) the roadside 3D object detector to generate 3D detection results; iii) the multi-object tracker to identify detected objects; iv) the global locator to generate geo-localization information; v) the mobile-edge-cloud-based communicator to transmit perception information to equipped vehicles, and vi) the onboard advisor to reconstruct and display the real-time traffic conditions. An automatic perception evaluation approach is proposed to support the assessment of data-driven models without human-labeling requirements and a CMM field-operational system is deployed at a real-world intersection to assess the performance of the CMM. Results from field tests demonstrate that our CMM prototype system can achieve 96.99% precision and 83.62% recall for detection and 73.55% ID-recall for tracking. High-fidelity real-time traffic conditions (at the object level) can be geo-localized with a root-mean-square error (RMSE) of 0.69m and 0.33m for lateral and longitudinal direction, respectively, and displayed on the GUI of the equipped vehicle with a frequency of 3 − 4Hz. 
    more » « less